Vis a Vis - Netflix

Posted on Fri 07 June 2019 in netflix

She broke the law for the boss she fell in love with. Now this naive girl has to pay the price.

Vis a Vis - Netflix

Type: Scripted

Languages: Spanish

Status: Running

Runtime: 70 minutes

Premier: 2015-04-20

Vis a Vis - Ultraviolet–visible spectroscopy - Netflix

Ultraviolet–visible spectroscopy or ultraviolet–visible spectrophotometry (UV–Vis or UV/Vis) refers to absorption spectroscopy or reflectance spectroscopy in the ultraviolet-visible spectral region. This means it uses light in the visible and adjacent ranges. The absorption or reflectance in the visible range directly affects the perceived color of the chemicals involved. In this region of the electromagnetic spectrum, atoms and molecules undergo electronic transitions. Absorption spectroscopy is complementary to fluorescence spectroscopy, in that fluorescence deals with transitions from the excited state to the ground state, while absorption measures transitions from the ground state to the excited state.

Vis a Vis - Deviations from the Beer–Lambert law - Netflix

At sufficiently high concentrations, the absorption bands will saturate and show absorption flattening. The absorption peak appears to flatten because close to 100% of the light is already being absorbed. The concentration at which this occurs depends on the particular compound being measured. One test that can be used to test for this effect is to vary the path length of the measurement. In the Beer–Lambert law, varying concentration and path length has an equivalent effect—diluting a solution by a factor of 10 has the same effect as shortening the path length by a factor of 10. If cells of different path lengths are available, testing if this relationship holds true is one way to judge if absorption flattening is occurring. Solutions that are not homogeneous can show deviations from the Beer–Lambert law because of the phenomenon of absorption flattening. This can happen, for instance, where the absorbing substance is located within suspended particles (see “Beer's law revisited”, Berberan-Santos, J. Chem. Educ. 67 (1990) 757, and “Absorption flattening in the optical spectra of liposome-entrapped substances”, Wittung, Kajanus, Kubista, Malmström, FEBS Lett 352 (1994) 37). The deviations will be most noticeable under conditions of low concentration and high absorbance. The last reference describes a way to correct for this deviation. Some solutions, like copper(II)chloride in water, change colour at a certain concentration because of changed conditions around the coloured ion (the divalent copper ion). For copper(II)chloride it means a shift from blue to green, which would mean that monochromatic measurements would deviate from the Beer–Lambert law.

Vis a Vis - References - Netflix